Fundamental Parameters of the Standard Model

Andreas S. Kronfeld LQCD Review, June 4–5, 2009

Particle Physics

Standard Model

19 Parameters

- Gauge couplings: α_s , α_{QED} , $\alpha_W = (m_W/v)^2/\pi$;
- Lepton masses: m_e , m_{μ} , m_{τ} ;
- Quark masses: $m_u e^{i\theta}$, m_d , m_s , m_c , m_b , m_t ;
- CKM: V_{us} , V_{cb} , V_{ub} , $\sin \delta_{KM}$;
- EWSB: $v = 246 \text{ GeV}, \lambda = (m_H/v)^2/2$.
- Need lattice QCD, lattice Yukawa.

Existential Questions

- What breaks electroweak symmetry?
- What generates flavor? Flavor change V?
- Why is $m_u < m_d$? Is $m_u = 0$?
- With δ_{KM} (and θ), what causes *CP* violation?
- Without these, no chemistry or biology.

- Most particle physicists believe that the answers lie beyond the SM:
 - model-building theorists;
 - experimenters searching.
- To recognize BSM, need precision SM.
- Half the parameters are "obscured" by nonperturbative QCD: need lattice QCD.
- (And who says EWSB is weakly coupled?)

SM Status

Gauge symmetry

Law of Nature

- Quantum numbers
- Law of Nature

Higgs sector

Speculation

- Flavor interactions
- Testable science

Lattice QCD Data

Asqtad Data Mine

MILC + USQCD			am_l / am_s	$m_{\pi}L$	Lattice	# Lats	
				$a \approx 0.09 \text{ fm}$			
(2002–2009)				0.0124 / 0.031	5.78	$28^3 \times 96$	1996C
a = 0.18 fm not				0.0093 / 0.031	5.04	$28^3 \times 96$	1138C
a = 0.15 fm shown			0.0062 / 0.031	4.14	$28^3 \times 96$	1946C	
am_l / am_s	$m_{\pi}L$	Lattice	# Lats	0.00465 / 0.031	4.11	$32^3 \times 96$	540C
a = 0.12 fm			0.0031 / 0.031	4.21	$40^3 \times 96$	1012C	
0.40/0.40	29.4	$20^{3} \times 64$	332	0.00155 / 0.031	4.80	$64^3 \times 96$	700R
0.20/0.20	19.6	$20^{3} \times 64$	341	0.0062 / 0.0186	4.09	$28^3 \times 96$	985C
0.10/0.10	13.7	$20^{3} \times 64$	339	0.0031 / 0.0186	4.22	$40^3 \times 96$	642N
0.05/0.05	9.7	$20^{3} \times 64$	425	0.0031 / 0.0031	4.20	$40^3 \times 96$	440R
0.04/0.05	8.7	$20^{3} \times 64$	351	$a \approx 0.06 \text{ fm}$			
0.03 / 0.05	7.6	$20^{3} \times 64$	564	0.0072 / 0.018	6.33	$48^3 \times 144$	625
0.02 / 0.05	6.2	$20^{3} \times 64$	1758E	0.0054 / 0.018	5.48	$48^3 \times 144$	617C
0.01 / 0.05	4.5	$20^{3} \times 64$	2023E	0.0036 / 0.018	4.49	$48^3 \times 144$	771
0.01 / 0.05	6.3	$28^{3} \times 64$	241	0.0025 / 0.018	4.39	$56^3 \times 144$	800N
0.007 / 0.05	3.8	$20^{3} \times 64$	1852E	0.0018 / 0.018	4.27	$64^3 \times 144$	826C
0.005 / 0.05	3.8	$24^{3} \times 64$	1802E	0.0036 / 0.0108	5.96	$64^3 \times 144$	483N
0.03 / 0.03	7.6	$20^{3} \times 64$	359	$a \approx 0.045 \text{ fm}$			
0.01 / 0.03	4.5	$20^{3} \times 64$	346	0.0028 / 0.0140	4.56	$64^{3} \times 192$	861N

DWF Data Mine

RBC+UKQCD using resources of RBRC, UKQCD, USQCD

a (fm)	volume	am_l/am_s	$m_{\pi}L$	lgfs
0.114	24 ³ ×64	0.03/0.04	9.0	~200
		0.02/0.04	7.6	~200
		0.01/0.04	5.7	~800
		0.005/0.04	4.5	~800
0.081	$32^{3} \times 64$	0.008/0.03	5.5	~600
		0.006/0.03	4.8	~900
		0.004/0.03	4.0	~800

Non-US Data Mines

- MILC $n_f = 2+1$ ensembles most extensive anywhere.
- CP-PACS/PACS-CS and BMW ensembles \approx RBC-UKQCD, but focus on masses, f_K/f_{π} .
- ETM $n_f = 2$ ensembles: serious SM pheno starting (but need extra error estimate).
- CLS plans set of $n_f = 2$ ensembles.

- All results presented here obtained from USQCD data mines, because:
 - LQCD Project under review today;
 - non-US SM calculations lag (either $n_f \le 2$ or not written up).
- All "USQCD" data mines generated partly outside LQCD project: NSF, pre-LQCD; RBRC, UKQCD; DOE leadership class.

QCD Parameters

Quark Masses

Light quark masses [arXiv:0903.3598+refs]:

$$m_u/m_d = 0.42 \pm 0_{
m stat} \pm 0.01_{
m syst} \pm 0.04_{
m EM}$$
 $m_s/\hat{m} = 27.2 \pm 0.1_{
m stat} \pm 0.3_{
m syst} \pm 0_{
m EM}$ $ar{m}_s(2~{
m GeV}) = 88 \pm 0_{
m stat} \pm 3_{
m syst} \pm 0_{
m EM} \pm 4_{
m match} ~{
m MeV}$ with two-loop matching [hep-lat/05] [1160].

- Tom Banks: Really?! We have to stop hoping that $m_u = 0$? Are others checking this?
- RBC/UKQCD checking; Sharpe non-pert Z_m .

- Charmed quark mass [on 2+1 asqtad sea]:
 - charmonium correlators from HPQCD;
 - α_s^3 PT by Karlsruhe.
- Similar to Karlsruhe analysis of e⁺e⁻ data.
- Results:
 - $m_c(m_c) = 1.268(9)$ GeV [HPQCD lattice],
 - $m_c(m_c) = 1.268(12) \text{ GeV } [e^+e^- \text{ data}].$

Strong Coupling \alpha_s

- Charmonium moments [arXiv:0805.2999]:
 - $\alpha_s = 0.1174(12)$.
- Wilson loops [on 2+1 asqtad sea]:
 - $\alpha_s = 0.1183(8)$, HPQCD, arXiv:0807.1687;
 - $\alpha_s = 0.1192(11)$, Maltman, arXiv:0807.2020;
- PDG non-lat average (2008): $\alpha_s = 0.1185(9)$.

PDG 2008

QCD of hadrons = QCD of partons

Flavor Physics

Flavor Physics

- The Cabibbo-Kobayashi-Maskawa matrix is special unitary, arising from diagonalization of Yukawa couplings. SU(3): 8 parameters.
- Symmetry of gauge interactions reduces
 CKM parameters to 4.
- Many testable constraints.

Assuming the SM:

$$V_{ud}$$
 V_{us} V_{ub} V

trees loops

no go

CKM Hierarchy

Measuring CKM

For numerous processes:

$$\Gamma = \begin{pmatrix} \text{known} \\ \text{factors} \end{pmatrix} \begin{pmatrix} \text{CKM} \\ \text{factors} \end{pmatrix} \begin{pmatrix} \text{QCD} \\ \text{factor} \end{pmatrix}$$

- Decay constants, bag factors, form factors.
- Leptonic decays, meson mixing, semileptonic.

Decay Constants

- One of the simplest quantities is decay constant of pseudoscalar mesons, f_{π} , etc.
- Some results (entries in MeV):

meson	MILC	FNAL	HPQCD	Expt	Dev (σ)
π	128 ± 3		132 ± 2	130.7 ± 0.4	0.4
K	155 ± 3		157 ± 2	159.9 ± 1.5	1.7
D		207 ± 11	207 ± 4	206 ± 9	0.1
D_s		249 ± 11	241 ± 3	263.1 ± 6.7	3.0

f_{π} and f_{K}

- Reproducible:
 - Asqtad on asqtad
 - HISQ on asqtad
 - DWF on DWF
 - DWF on asqtad
- Others have f_K/f_{π} .
- Solidification.

Vus

Flavianet Kaon WG: http://ific.uv.es/flavianet/

- V_{ud} from nuclear
- f₊(0) from arXiv:
 0710.5136 [RBC/ UKQCD]
- f_K/f_{π} from arXiv: 0706.1726 [HPQCD]

D Meson Decays

- Taking $|V_{ud}|$ & $|V_{us}|$ and CKM unitarity yields $|V_{cs}|$ & $|V_{cd}|$ (with sub per cent error).
- With this step, leptonic & semileptonic decays of D and D_s mesons are known ...
 - ... up to decay constants and form factors, calculable with lattice QCD.

Plot prepared for a paper supporting CLEO's 500th paper of all time.

More precise measurements to appear in CLEO's 500th paper.

D_s Puzzle

- 0σ for $D \rightarrow l\nu$.
- 3σ for $D_s \rightarrow l\nu$:
 - exptl statistical σ .
- Can't blame it on charm.
- If new physics, then leptoquarks.
- BaBar remeasuring.

Unitarity Triangle

 Dozens of measurements, but unitarity of CKM constrains SM predictions:

$$V_{ud}^* V_{ub} + V_{cd}^* V_{cb} + V_{td}^* V_{tb} = 0$$

tracing out a triangle on complex plane.

 Results often summarized with this socalled unitarity triangle.

Unitarity Triangle

CKM UT Now

|V_{cb}| normalizes UT

Christoph Schwanda (at CKM): 2.50 tension, so examine correlations in inputs to inclusive.

Paolo Gambino (at La Thuile): Tension! New physics, like LR models?

- The most recent work on $B \to \pi l \nu$ makes noteworthy use of experimental data.
- Separately fit shape of lattice QCD $f_+(q^2)$ and BaBar's $|V_{ub}|f_+(q^2)$.
- Shapes agree, so proceed to combined fit: relative normalization is $|V_{ub}|$.
- Finds optimal combo of lattice, expt errors.

Curve: convergent z fit of lattice QCD Points: BaBar data scaled by final $|V_{ub}|$

sin dem via Kaon Mixing

Note tension between direct (i.e., lattice) and indirect view of kaon mixing [e.g., Lunghi, Soni].

|V_{td}| & |V_{ts}|

- B meson mixing is sensitive to top quark.
- Experiments < 1% precision, for B, B_s .
- Four-quark operators; operator mixing.

$B \rightarrow \tau \nu$

- Assuming the SM, $|V_{ub}|f_B = 0.925 \pm 0.101 \text{ MeV}$.
- With $|V_{ub}|$ from the exclusive method, this implies $f_B = 274 \pm 42 \text{ MeV}$.
- Rather higher than LQCD avg: $f_B = 193 \pm 8 \text{ MeV}$ [HPQCD \oplus Fermilab/MILC]
- What could explain the discrepancy?
 - A non-Standard charged particle, recently observed (in the theoretical literature).

A graphical view:

a 1.9σ discrepancy.

Exclusion Plot

- Charged Higgs: multiply BR with $[1-\tan^2\beta \ (m_B/m_H)^2]^2$
- Exclude part of $(\tan\beta, m_H)$ plane.
- Non-standard H[±] overwhelms W[±].

Perspective

Outlook

- Lattice QCD shaping HEP's perspective on α_s , quark masses, and flavor physics:
 - in some cases with no alternative.
- Still, however, at the beginning: LQCD precision lags experiment on f_{π} , f_{K} , meson mixing, and semileptonic form factors.

- At the outset of the LQCD Project, the USQCD Collaboration forecast the reduction in errors with LQCD resources.
 - A Case Study of the Impact of Increased Computational Resources on Lattice Gauge Theory Calculation: Constraints on Standard Model Parameters
- Key results $(B_K, f_B B_B^{1/2}, \xi, |V_{cb}| \& |V_{ub}|)$ shown here have all met these aspirations.

- Experiments involved:
 - Kaon: E865, ISTRA+, KLOE, KTeV, NA48.
 - Charm: FOCUS, CLEO-c, Belle, BaBar.
 - B: BaBar, Belle, CLEO, CDF, D0.
 - Future: rare K, BES-3, LHC-b, ATLAS,
 CMS, super B factories.

Questions?